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Abstract

The impact of large trades on market prices is a widely discussed
but rarely measured phenomenon, of essential importance to sell-
and buy-side participants. We analyse a large data set from the
Citigroup US equity trading desks, using a simple but realistic the-
oretical framework. We fit the model across a wide range of stocks,
determining the dependence of the coefficients on parameters such
as volatility, average daily volume, and turnover. We reject the com-
mon square-root model for temporary impact as function of trade
rate, in favor of a 3/5 power law across the range of order sizes
considered. Our results can be directly incorporated into optimal
trade scheduling algorithms and pre- and post-trade cost estima-
tion.
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1 Introduction

Transaction costs are widely recognized as a large determinant of invest-
ment performance (see, for example, Freyre-Sanders, Guobuzaite, and
Byrne (2004)). Not only do they affect the realized results of an active
investment strategy, but they also control how rapidly assets can be con-
verted into cash should the need arise. Such costs generally fall into two
categories:

• Direct costs are commissions and fees that are explicitly stated and
easily measured. These are important and should be minimized,
but are not the focus of this paper.

• Indirect costs are costs that are not explicitly stated. For large
trades, the most important component of these is the impact of the
trader’s own actions on the market. These costs are notoriously dif-
ficult to measure, but they are the most amenable to improvement
by careful trade management and execution.

This paper presents a quantitative analysis of market impact costs based
on a large sample of Citigroup US equity brokerage executions. We use a
simple theoretical model that lets us bring in the very important role of
the rate of execution.

The model and its calibration are constructed to satisfy two criteria:

• Predicted costs are quantitatively accurate, as determined by direct
fit and by out-of-sample backtesting, as well as extensive consulta-
tion with traders and other market participants. We hope to provide
out-of-sample backtests in a future paper.

• The results may be used directly as input to an optimal portfo-
lio trade scheduling algorithm. (The scheduling algorithm itself is
nontrivial and will be published elsewhere.)

The results of this study are currently being implemented in Citigroup’s
Best Execution Consulting Services (BECS) software, for use internally by
all desks as well as clients of the Equity Division. The current work is
focused on the US market but work is underway to extend it to global eq-
uities. BECS is the delivery platform for the next generation of Citigroup’s
trading analytic tools, both pre- and post-execution.

The pre-trade model presented here is an extension of the market
standard existing model that has been delivered through the StockFacts
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• Advantages

– Calibrated from real data

– Includes time component

– Incorporates intraday profiles

– Uses nonlinear impact functions

– Gives confidence levels for coefficients

• Disadvantages

– Based only on Citigroup trading data

– Small amount of data for small-cap stocks

– Small amount of data for very large trades

Table 1: Distinguishing features of our model

Pro software for the last 14 years (Sorensen, Price, Miller, Cox, and Birn-
baum 1998). The new pre-trade model is based on better developed em-
pirical foundations: it is based on real trading data taking time into con-
sideration while verifying the results through post trade analysis. Table 1
summarizes the advantages and some disadvantages of our approach.

Much work in both the academic and the industrial communities has
been devoted to understanding and quantifying market impact costs.
Many academic studies have worked only with publically available data
such as the trade and quote (TAQ) tick record from the New York Stock Ex-
change. Breen, Hodrick, and Korajczyk (2002) regress net market move-
ment over 5-minute and half-hour time periods against the net buy-sell
imbalance during the same period, using a linear impact model; a similar
model is developed in Kissell and Glantz (2003). Rydberg and Shephard
(2003) develop a rich econometric framework for describing price mo-
tions; Dufour and Engle (2000) investigate the key role of waiting time
between successive trades. Using techniques from statistical physics,
Lillo, Farmer, and Mantegna (2003) look for a power-law scaling in the
impact cost function, and find significant dependence on total market
capitalization as well as daily volume, and Bouchaud, Gefen, Potters, and
Wyart (2004) discover nontrivial serial correlation in volume and price
data.
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The publically available datasets lack reliable classification of indi-
vidual trades as buyer- or seller-initiated. Even more significantly, each
transaction exists in isolation; there is no information on sequences of
trades that form part of a large transaction. Some academic studies have
used limited data sets made available by asset managers that do have
this information, where the date but not the time duration of the trade
is known (Chan and Lakonishok 1995; Holthausen, Leftwich, and Mayers
1990; Keim and Madhavan 1996).

Our goal is to use a large proprietary data set to measure the indirect
costs experienced by large institutional traders, and to characterize the
dependence of these costs on a few explanatory variables, so that these
costs may be estimated and controlled. An essential variable incorpo-
rated in our study is the rate of execution. We know of no other study
that has carried out this fit directly, although various models in use in the
industry (Alba 2002; de Ternay 2002; Weisberger and Kreichman 1999)
are based on similar regressions on smaller samples. We describe our
data set in Section 2.

The transaction cost model embedded in our analysis is based on the
model presented by Almgren and Chriss (2000) with nonlinear extensions
from Almgren (2003). The essential features of this model, as described
in Section 3 below, are that it explicitly divides market impact costs into
a permanent component associated with information, and a temporary
component arising from the liquidity demands made by execution in a
short time.

In Section 4 we carry out the regression to determine the model pa-
rameters. In doing this, we extend the model to include dependence
of the coefficients on econometric variables such as volatility, etc. This
cross-sectional analysis verifies the structure of the parameters chosen
in Section 3.

2 Data

The data set on which we base our analysis contains, before filtering, al-
most 700,000 US stock trade orders executed by Citigroup Equity Trading
desks for the 19-month period from December 2001 through June 2003.
(The model actually used within the BECS software is estimated on an
on-going basis, to reflect changes in the trading environment.) We now
briefly describe and characterize the raw data, and then the particular
quantities of interest that we extract from it.
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2.1 Description and filters

Each order is broken into one or more transactions, each of which may
generate one or more executions. For each order, we have the following
information:

• The stock symbol, requested order size (number of shares) and sign
(buy or sell) of the entire order. Client identification is removed.

• The times and methods by which transactions were submitted by
the Citigroup trader to the market. We take the time t0 of the first
transaction to be the start of the order. Some of these transactions
are sent as market orders, some are sent as limit orders, and some
are submitted to Citigroup’s automated VWAP server. Except for
the starting time t0, and except to exclude VWAP orders, we make
no use of this transaction information.

• The times, sizes, and prices of execution corresponding to each
transaction. Some transactions are cancelled or only partially exe-
cuted; we use only the completed price and size. We denote execu-
tion times by t1, . . . , tn, sizes by x1, . . . , xn, and prices by S1, . . . , Sn.

All orders are completed within one day (though not necessarily com-
pletely filled).

Figure 1 shows a typical example. A sell order for 2500 shares of DRI
was entered into the system at t0 =10:59 AM. The transactions submitted
by the trader generatedn = 5 executions, of which the last one completed
at tn =15:15. The dashed line in the figure shows the continuous-time
approximation that we use in the data fitting: execution follows the av-
erage day’s volume profile over the duration of the trade execution.

In addition, we have various additional pieces of information, such as
the instructions given by the client to the trader for the order, such as
“over the day”, “market on close”, ”market on open”, “VWAP”, or blank.

The total sample contains 682,562 orders, but for our data analysis
we use only a subset.

1. To exclude small and thinly traded stocks, we consider only orders
on stocks in in the Standard and Poor’s 500 index, which represent
about half of the total number of orders but a large majority of
the total dollar value. Even within this universe, we have enough
diversity to explore dependence on market capitalization, and we
have both NYSE and OTC stocks.
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Figure 1: A typical trading trajectory. The vertical axis represents shares
remaining; each step downwards is one execution. The trajectory starts
at the first transaction (order submission) recorded in the system; the
program ends when the last execution has been completed. The dashed
line is the continuous-time approximation that we use in the modeling.

2. We exclude approximately 400 orders for which the stock exhibits
more than 12.5% daily volatility (200% annual).

Furthermore, we want only orders that are reasonably representative of
the active scheduling strategies that are our ultimate goal.

3. We exclude orders for which the client requested “market on close”
or “market on open”. These orders are likely to be executed with
strongly nonlinear profiles, which do not satisfy our modeling as-
sumption. (There are only a few hundred of these orders.)

4. We exclude orders for which the client requested VWAP execution.
These orders have consistently long execution times and represent
very small rates of trading relative to market volume. (These are
about 16% of the total number of orders.)

Also,

5. We exclude orders for which any executions are recorded after 4:10
PM, approximately 10% of the total. In many cases, these orders use
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Citigroup’s block desk for some or all of the transactions, and the
fills are reported some time after the order is completed. Therefore
we do not have reliable time information.

This exclusion, together with our use of filled size in place of originally
requested size, could be a source of significant bias. For example, if
clients and traders consistently used limit orders, orders might be filled
only if the price moved in a favorable direction. Analysis of our data set
suggests that this effect is not significant—for example, we obtain almost
exactly the same coefficients with or without partially filled orders—and
informal discussions with traders confirm the belief that partial fills are
not the result of limit order strategy.

Most significantly, we exclude small orders since our goal is to esti-
mate transaction costs in the range where they are significant. Specifi-
cally, we include only orders that

6. have at least two completed transactions,

7. are at least 1000 shares, and

8. are at least 0.25% of average daily volume in that stock.

The results of our model are reasonably stable under changes in these
criteria. After this filtering, we have 29,509 orders in our data set. The
largest number of executions for any order is n = 548; the median is
around 5. The median time is around one-half hour.

Table 2 shows some descriptive statistics of our sample. Most of our
orders constitute only a few percent of typical market volume, and our
model is designed to work within this range of values. Orders larger than
a few percent of daily volume have substantial sources of uncertainty that
are not modeled here, and we cannot claim that our model accurately
represents them.

In addition to this proprietary data set, we also use the publically
available Trade and Quote (TAQ) data from the New York Stock Exchange.

2.2 Variables

The goal of our study is to describe market impact in terms of a small
number of input variables. Here we define precisely what market impacts
we are measuring, and what primary and auxiliary variables we will use
to model them.
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Mean Min Q1 Median Q3 Max
Total cost (%) 0.04 -3.74 -0.11 0.03 0.19 3.55
Permanent cost (I, %) 0.01 -3.95 -0.17 0.01 0.19 2.66
Temporary cost (J, %) 0.03 -3.57 -0.11 0.02 0.17 2.33
Shares/ADV (|X|, %) 1.51 0.25 0.38 0.62 1.36 88.62
Time (days) 0.39 0.00 0.10 0.32 0.65 1.01
Daily Vol. (%) 2.68 0.70 1.70 2.20 3.00 12.50
Mean spread (%) 0.14 0.03 0.08 0.11 0.16 2.37

Table 2: Summary statistics of orders in our sample: mean and quartile
levels for each of several descriptive variables. The three cost variables
are signed, and are very nearly symmetrically distributed about zero (I
and J are defined in Section 3).

Observables Let S(t) be the price of the asset being traded. For each
order, we define the following price points of interest:

S0 = market price before this order begins executing

Spost = market price after this order is completed

S̄ = average realized price on the order

The realized price S̄ =
∑
xjSj/

∑
xj is computed from the transaction

data set (xj , Sj are the sizes and prices of the individual executions). The
market prices S0 and Spost are bid-ask midpoints from TAQ.

The pre-trade price S0 is the price before the impact of the trade be-
gins to be felt (this is an approximation, since some information may
leak before any record enters the system). We compute S0 from the lat-
est quote just preceding the first transaction.

The post-trade price Spost should capture the “permanent” effects of
the trade program. That is, it should be taken long enough after the last
execution that any effects of temporary liquidity effects have dissipated.
In repeatedly performing the fits described in Section 4 below, we have
found that one half-hour after the last execution is adequate to achieve
this: for shorter time intervals the regressed values depend on the time
lag, and at about this level the variation stops. That is, we define

tpost = tn + one half-hour.

The price Spost is taken from the first quote following tpost. If tpost is
after market close, then we carry over to the next morning. This risks
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distorting the results by including excessive overnight volatility, but we
have found this to be give more consistent results than the alternative of
truncating at the close.

Based on these prices, we define the following impact variables:

Permanent impact: I = Spost − S0

S0

Realized impact: J = S̄ − S0

S0
.

The “effective” impact J is the quantity of most interest, since it deter-
mines the actual cash received or spent on the trade. In the model below,
we will define temporary impact to be J minus a suitable fraction of I,
and this temporary impact will be the quantity described by our theory.
We cannot sensibly define temporary impact until we write this model.

On any individual order, the impacts I, J may be either positive or
negative. In fact, since volatility is a very large contributor to their values,
they are almost equally likely to have either sign. They are defined so that
positive cost is experienced if I, J have the same sign as the total order
X: for a buy order with X > 0, positive cost means that the price S(t)
moves upward. We expect the average values of I, J, taken across many
orders, to have the same sign as X.

Volume time The level of market activity is known to vary substantially
and consistently between different periods of the trading day; this intra-
day variation affects both the volume profile and the variance of prices.
To capture this effect, we perform all our computations in volume time
τ , which represents the fraction of an average day’s volume that has exe-
cuted up to clock time t. Thus a constant-rate trajectory in the τ variable
corresponds to a VWAP execution in real time, as shown in Figure 1. The
relationship between t and τ is independent of the total daily volume;
we scale it so that τ = 0 at market open and τ = 1 at market close.

We map each of the clock times t0, . . . , tn in the data set to a cor-
responding volume time τ0, . . . , τn. Since the stocks in our sample are
heavily traded, in this paper we use a nonparametric estimator that di-
rectly measures differences in τ : the shares traded during the period
corresponding to the exection of each order. Figure 2 illustrates the em-
pirical profiles. The fluctuations in these graphs are the approximate
size of statistical error in the volume calculation for a 15-minute trade;
these errors are typically 5% or less, and are smaller for longer trades.
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To model more thinly traded stocks, or to implement the results of
a scheduling algorithm, one can make an analytical approximation. For
example, one can choose a specific cubic function for the intraday profile,
and estimate the shape of this function using a large variety of data.

Explanatory variables We want to describe the impacts I and J in terms
of the input quantities

X =
n∑
j=1

xj = Total executed size in shares

T = τn − τ0 = Volume duration of active trading

Tpost = τpost − τ0 = Volume duration of impact.

As noted above, X is positive for a buy order, negative for sell. We have
explored defining T using a size-weighted average of execution times but
the results are not substantially different. We make no use of the inter-
mediate execution times τ1, . . . , τn−1, and make no use of the execution
sizes except in computing the order size and the mean realised price.

We shall consistently use upper case T for elapsed volume intervals;
they may be interpreted as the fraction of an average day’s volume that
would execute between the starting and ending times.

In eventual application for trajectory optimization, the size X will
be assumed given, and the execution schedule, here represented by T ,
will be optimized. In general, the solution will be a complicated time-
dependent trajectory which will be parameterized by a time scale T . For
the purposes of data modeling, we ignore the trajectory optimization and
take the schedules to be determined only by the single number T .

Auxiliary variables Although our goal is to explain the dependence of
the impact costs I, J on order size X and trade time T , other market
variables will influence the solution. The most important of these are

V = Average daily volume in shares, and

σ = Daily volatility.

V is a ten-day moving average. For volatility, we use an intraday esti-
mator that makes use of every transaction in the day. We find that it is
important to track changes in these variables not only between different
stocks but also across time for the same stock.



Equity Market Impact May 10, 2005 12

3

6

9

3

6

9

Pct of
Daily Volm

Pct of
Daily Volm

1000 1100 1200 1300 1400 1500 1600

Time of day (hours)

1.0

2.0

3.0

1.0

2.0

3.0

Volatility
of Period (%)

Volatility
of Period (%)

1000 1100 1200 1300 1400 1500 1600

Time of day (hours)

Figure 2: Ten-day average intraday volume profile (upper) and volatilty
profile (lower), on 15-minute intervals. Our approach defines to a new
time scale determined empirically by the cumulative volume profile;
implicitly this takes the volatility profile to be the same which is ap-
proximately valid. Our estimation introduces statistical error which are
roughly the same size as the fluctuations in these graphs.
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These values serve primarily to “normalize” the active variable across
stocks with widely varying properties. It seems natural that order size
X should be measured as a fraction of average daily volume V : X/V is a
more natural variable than X itself.

In our model presented below, order size as a fraction of average vol-
ume traded during the time of execution will also be seen to be important.
We estimate VT directly by taking the average volume that executed be-
tween clock times t0 and tn over the previous 10 days. In fact, since in
our model trade duration T appears only in the combination VT , this
avoids the need to measure T directly.

We use volatility to scale the impacts: a certain level of participation
in the daily volume should cause a certain level of participation in the
“normal” motion of the stock. Our empirical results show that volatility
is the most important scale factor for cost impact.

3 Trajectory Cost Model

The model we use is based on the framework developed by Almgren and
Chriss (2000) and Almgren (2003), with simplifications made to facilitate
the data fitting. The main simplification is the assumption that the rate
of trading is constant (in volume time). In addition, we neglect cross-
impact, since our data set has no information about the effect of trading
one stock on the price of another.

We decompose the price impact into two components:

• A permanent component that reflects the information transmit-
ted to the market by the buy/sell imbalance. This component is
believed to be roughly independent of trade scheduling; “stealth”
trading is not admitted by this construction. In our data fit, this
component will be independent of the execution time T .

• A temporary component reflects the price concession needed to
attract counterparties within a specified short time interval. This
component is highly sensitive to trade scheduling; here, it will de-
pend strongly on T .

More detailed conceptual frameworks have been developed (Bouchaud,
Gefen, Potters, and Wyart 2004), but this easily-understood model has
become traditional in the industry and in academic literature (Madhavan
2000).
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The realized price impact is a combination of these two effects. In
terms of the realized and permanent impact defined above and observed
from the data, our model may be summarized as

Realized = Permanent + Temporary + Noise

with suitable coefficients and scaling depending on T . Thus the tempo-
rary impact is obtained as a difference between the realized impact and
the permanent impact; it is not directly observable although we have a
theoretical model for it.

We start with an initial desired order of X shares. We assume that
this order is completed by uniform rate of trading over a volume time
interval T . That is, the trade rate in volume units is v = X/T , and is held
constant until the program is completed. Constant rate in these units is
equivalent to VWAP execution during the time of execution. Note that v
has the same sign as X; thus v > 0 for an buy order and v < 0 for a sell
order. Market impact will move the price in the same direction as v .

3.1 Permanent and temporary impact

We now write our model in detail. In writing these expressions, we as-
sume that the asset under discussion is a single stock, during a time
period within which the impact functions are reasonably homogeneous.
Later we shall consider the question of how the impact functions vary
across time and among stocks.

Permanent impact Our model postulates that the asset price S(τ) fol-
lows an arithmetic Brownian motion, with a drift term that depends on
our trade rate v . That is,

dS = S0 g(v)dτ + S0σ dB,

where B(τ) is a standard Brownian motion (or Bachelier process), and
g(v) is the permanent impact function; the only assumption we make
so far is that g(v) is increasing and has g(0) = 0. As noted above, τ
is volume time, representing the fraction average of an average day’s
volume that has executed so far. We integrate this expression in time,
taking v to equal X/T for 0 ≤ τ ≤ T , and get the permanent impact

I = T g
(
X
T

)
+ σ

√
Tpost ξ (1)
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where ξ ∼N (0,1) is a standard Gaussian variate.
Note that if g(v) is a linear function, then the accumulated drift at

time τ is proportional to Xτ/T , the number of shares we have executed
to time τ , and the total permanent impact I is proportional to the total
order size X, independently of the time scale T .

Temporary impact The price actually received from our trades is

S̃(τ) = S(τ) + S0h
(
X
T

)
,

where h(v) is the temporary impact function. For convenience, we have
scaled it by the market price at the start of trading, since the time inter-
vals involved are all less than one day.

This expression is a continuous-time approximation to a discrete pro-
cess. A more accurate description would be to imagine that time is bro-
ken into intervals such as, say, one hour or one half-hour. Within each
interval, the average price we realise on our trades during that interval
will be slightly less favorable than the average price that an unbiased
observer would measure during that time interval. The unbiased price
is affected on previous trades that we have executed before this interval
(as well as volatility), but not on their timing. The additional concession
during this time interval is strongly dependent on the number of shares
that we execute in this interval.

At constant liquidation rate, calculating the time average of the exe-
cution price gives the temporary impact expression

J − I
2
= h

(
X
T

)
+ σ


√√√√ T

12

(
4− 3

T
Tpost

)
χ − Tpost − T

2
√
Tpost

ξ

 , (2)

where χ ∼ N(0,1) is independent of ξ. The term I/2 reflects the effect
on the later execution prices of permanent impact caused by the earlier
parts of the program.

The rather complicated error expression reflects the fluctuation of the
middle part of the Brownian motion on [0, T ] relative to its end point at
Tpost. It is used only for heteroskedasticity corrections in the regression
fits below.

Equations (1,2) give us explicit expressions for the permanent and
temporary cost components I, J in terms of the valus of the functions
g,h at known trade rates, together with estimates of the magnitude of
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the error coming from volatility. The data-fitting procedure is in principle
straightforward: we compute the costs I, J from the transaction data,
and regress those values against the order size and time as indicated, to
extract directly the functions g(v),h(v).

3.2 Choice of functional form

We now address the question of what should be the structure of the per-
manent impact function g(v) and the temporary impact function h(v).
Even with our large sample, it is not possible to extract these functions
purely from the data; we must make a hypothesis about their structure.

We postulate that these functions are power laws, that is, that

g(v) = ±γ|v|α (3)

and

h(v) = ±η|v|β, (4)

where the numerical values of the (dimensionless) coefficients γ,η and
the exponents α,β are to be determined by linear and nonlinear regres-
sion on the data. The sign is to be chosen so g(v) and h(v) have the
same sign as v .

The class of power law functions is extremely broad. It includes con-
cave functions (exponent < 1), convex functions (exponent > 1), and lin-
ear functions (exponent = 1). It is the functional form that is implicitly
assumed by fitting straight lines on a log-log plot, as is very common in
physics and has been done in this context, for example, by Lillo, Farmer,
and Mantegna (2003).

We take the same coefficients for buy orders (v > 0) and sell orders
(v < 0). It would be a trivial modification to introduce different coef-
ficients γ± and η± for the two sides, but our exploratory data analysis
has not indicated a strong need for this. Similarly, it would be possible
to use different coefficients for stocks traded on different exchanges but
this does not appear to be necessary.

We are far from neutral in the choice of the exponents. For the per-
manent impact function, there is strong reason to prefer the linear model
with α = 1. This is the only value for which the model is free from ar-
bitrage (Huberman and Stanzl 2004) (nonlinear temporary impact func-
tions do not introduce arbitrage). Furthermore, the linear function is the
only one for which the permanent price impact is independent of trading
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time; this is a substantial conceptual simplification though of course it
must be supported by the data.

For temporary impact, there is ample empirical evidence indicating
that the function should be concave, that is, 0 < β < 1. This evidence
dates back to Loeb (1983) and is strongly demonstrated by the fits in
Lillo, Farmer, and Mantegna (2003). In particular, theoretical arguments
(Barra 1997) suggest that the particular value β = 1

2 is especially plausi-
ble, giving a square-root impact function.

Our approach is therefore as follows: We shall make unprejudiced
fits of the power law functions to the entire data set, and determine our
best estimates for the exponents α,β. We will then test the validity of
the values α = 1 and beta = 1/2, to validate the linear and square root
candidate functional forms.

Once the exponents have been selected, simple linear regression is
adequate to determine the coefficients. In this regression, we use het-
eroskedastic weighting with the error magnitudes from (1,2). The result
of this regression is not only values for the coefficients, but also a collec-
tion of error residuals ξ and χ, which must be evaluated for normality
as the theory supposes.

Single stock fits Our data is just barely adequate to determine coeffi-
cients for single stocks, for a few of the names that have largest represen-
tation in our sample, and fixing the values for the exponents. We do not
show these results since they do not have enough statistical significance
to be useful. But they are a good starting point for the problem of real
interest, which is the proper way to scale the model across a universe of
stocks of widely varying properties.

4 Cross-Sectional Description

In the preceding discussion, we assumed a single asset, for which we as-
sumed that changes in impact functions from one day to the next were
adequately handled by scaling the impact functions by daily volume and
volatility. But as noted above, single-stock fits are of only marginal sig-
nificance for practical use.
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4.1 Parameter scaling

Above we have assumed an “ideal” asset, all of whose properties are con-
stant in time. For any real asset, the parameters that determine market
impact will vary with time. For example, one would expect that execution
of a given number of shares would incur higher impact costs on a day
with unusually low volume or with unusually high volatility.

We therefore assume that the natural variable for characterising the
size of an overall order or of a rate of trading is not shares per se but
the number of shares relative to a best estimate of the background flow
for that stock in the time period when trading will occur. That is, the
impact cost functions should be expressed in terms of the dimensionless
quantity X/VT rather than X itself, where V is the average number of
shares per day defined in Section 2.2.

Furthermore, we suppose the motion of the price should not be given
as a raw percentage figure, but should be expressed as a fraction of the
“normal” daily motion of the price, as expressed by the volatility σ .

With both of these assumptions, we modify the expressions (1,2) to

I = σ T g
(
X
VT

)
+
〈
noise

〉
(5)

J − I
2
= σ h

(
X
VT

)
+
〈
noise

〉
. (6)

where the “noise” is the error expressions depending on volatility. Now
g(·) and h(·) are dimensionless functions of a dimensionless variable;
they are assumed to be constant in time for a single stock across days
when σ and V vary. We now investigate the dependence of these func-
tions on cross-stock variables.

4.2 Model determination

In order to bring the full size of our data set into play, we must address
the more complicated and less precise question of how the impact func-
tions vary across stocks; that is, how they might depend on variables
such as total market capitalization, shares outstanding, bid-ask spread
or other quantities. We consider permanent and temporary impact sep-
arately.

Permanent We insert a “liquidity factor” L into the permanent cost
function g(v), where L depends on the market parameters character-
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izing each individual stock (in addition to daily volume and volatility).
There are several candidates for the inputs to L:

• Shares outstanding: We constrain the form of L to be

L =
(
Θ
V

)δ
.

where Θ is the total number of shares outstanding, and the expo-
nent δ is to be determined. The dimensionless ratio Θ/V is the
inverse of “turnover,” the fraction of the company’s value traded
each day. This is a natural explanatory variable, and has been used
in empirical studies such as Breen, Hodrick, and Korajczyk (2002).

• Bid-ask spread: We have found no consistent dependence on the
bid ask spread across our sample, so we do not include it in L.

• Market capitalization: Market cap differs from shares outstanding
by the price per share, so including this factor is equivalent to in-
cluding a “price effect.” Our empirical studies suggest that there is a
persistent price effect, as also found by Lillo, Farmer, and Mantegna
(2003), but that the dependence is weak enough that we neglect it
in favor of the conceptually simpler quantity Θ/V .

Temporary In extensive preliminary exploration, we have found that
the temporary cost function h(v) does not require any stock-specific
modification: liquidity cost as a fraction of volatility depends only on
shares traded as a fraction of average daily volume.

Determination of exponent After assuming the functional form ex-
plained above, we confirm the model and determine the exponent δ by
performing a nonlinear regression of the form

I
σ
= γ T sgn(X)

∣∣∣∣ XVT
∣∣∣∣α (ΘV

)δ
+ 〈noise〉 (7)

1
σ

(
J − I

2

)
= η sgn(X)

∣∣∣∣ XVT
∣∣∣∣β + 〈noise〉 (8)

where “noise” is again the heteroskedastic error term from (1), and sgn
is the sign function. We use a modified Gauss-Newton optimization algo-
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rithm to determine the values of γ, α, and δ that minimize the normal-
ized residuals. The results are

α = 0.891 ± 0.10

δ = 0.267 ± 0.22

β = 0.600 ± 0.038.

Here, as throughout this paper, the error bars expressed with ± are one
standard deviation, assuming a Gaussian error model. Thus the “true”
value can be expected to be within this range with 67% probability, and
within a range twice as large with 95% probability.

From these values we draw the following conclusions:

• The value α = 1, for linear permanent impact, cannot reliably be
rejected. In view of the enormous practical simplification of linear
permanent impact, we choose to use α = 1.

• The liquidity factor is very approximately δ = 1/4.

• For temporary impact, our analysis confirms the concavity of the
function with β strictly inferior to 1. This confirms the fact that
the bigger the trades made by fund managers on the market, the
less additional cost they experience per share traded. At the 95%
confidence level, the square-root model β = 1/2 is rejected. We will
therefore fix on the temporary cost exponent β = 3/5. In compari-
son with the square-root model, this gives slightly smaller costs for
small trades, and slightly larger costs for large trades.

Note that because δ > 0, for fixed values of the number X of shares in the
order and the average daily volume V , the cost increases with Θ, the total
number of shares outstanding. In effect, a larger number of outstanding
shares means that a smaller fraction of the company is traded each day,
so a given fraction of that flow has greater impact.

Therefore these results confirm empirically the theoretical arguments
of Huberman and Stanzl (2004) for permanent impact that is linear in
block size, and the concavity of temporary impact as has been widely
described in the literature for both theoretical and empirical reasons.

4.3 Determination of coefficients

After fixing the exponent values, we determine the values of γ and η
by linear regression of the models (7,8), using the heteroskedastic error
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estimates given in (1,2). We find

γ = 0.314 ± 0.041 (t = 7.7)
η = 0.142 ± 0.0062 (t = 23).

The t statistic given here is computed under the assumption that the
Gaussian model expressed in (1,2) is valid; the error estimates are the
value divided by the t statistic. Although the actual residuals are fat-
tailed as we discuss below, these estimates indicate that the coefficient
values are highly significant.

TheR2 values for these regressions are typically less than one percent,
indicating that only a small part of the value of the dependent variables
I and J is explained by the model in terms of the independent variables.
This is precisely what is expected, given the small size of the permanent
impact term relative to the random motion of the price due to volatility
during the trade execution.

This persistent cost, though small, is of major importance since it is in
average the cost incurred while trading by fund managers. Furthermore,
since most orders are part of large portfolio trades, the volatility cost
actually experienced on the portfolio level is considerably lower than
exhibited in the stock-level analysis, increasing the significance of the
fraction of impact cost estimated. As previously mentioned, the non-
linear optimization of the volatility versus impact cost trade-off at the
portfolio level is a subject of current work.

The dimensionless numbers γ and η are the “universal coefficients of
market impact:” according to our model they apply to every order and
every asset in the entire data set. To summarize, they are to be inserted
into the equations

I = γ σ
X
V

(
Θ
V

)1/4
+ 〈noise〉

J = I
2
+ sgn(X) ησ

∣∣∣∣ XVT
∣∣∣∣3/5 + 〈noise〉

giving the expectation of impact costs; in any particular order the realized
values will vary greatly due to volatility. Recall that I is not a cost, but
is simply the net price motion from pre-trade to post-trade. The actual
cost experienced on the order is J.

We have chosen these simple forms in order to have a single model
that applies reasonably well across the entire data set, which consists
entirely of large-cap stocks in the US markets. More detailed models
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IBM DRI
Average daily volume V 6.561 M 1.929 M
Shares outstanding Θ 1728 M 168 M
Inverse turnover Θ/V 263 87
Daily volatility (%) σ 1.57 2.26
Normalized trade size X/V 0.1 0.1
Normalized permanent I/σ 0.126 0.096
Permanent price impact (bp) I 20 22
Trade duration (days) T 0.1 0.2 0.5 0.1 0.2 0.5
Normalized temporary K/σ 0.142 0.094 0.054 0.142 0.094 0.054
Temporary impact cost (bp) K 22 15 8 32 21 12
Realized cost (bp) J 32 25 18 43 32 23

Table 3: Example of permanent and temporary impact costs, for a pur-
chase of 10% of day’s average volume, in two different large-cap stocks.
The permanent cost is independent of time of execution. The tempo-
rary cost depends on the time, but across different assets it is the same
fraction of daily volatility. We write K = J − I/2.

could be constructed to capture more limited sets of dates or assets, or to
account for variations across global markets. In practice, we expect that
the coefficients, perhaps the exponents, and maybe even the functional
forms, will be continually updated to reflect the most recent data.

Examples In Figure 3 we show the impact cost functions, and in Table 3
we show specific numerical examples for two large-cap stocks, when the
customer buys 10% of the average daily volume. Because DRI turns over
1/87 of its total float each day, whereas IBM turns over only 1/263, trad-
ing one-tenth of one day’s volume causes a permanent price move of only
0.1 times volatility for DRI, but 0.13 times for IBM; half of this is expe-
rienced as cost. Because the permanent impact function is linear, the
permanent cost numbers are independent of the time scale of execution.

4.4 Residual analysis

The result of our analysis is not simply the values of the coefficients
presented above. In addition, our error formulation provides specific
predictions for the nature of the residuals ξ and χ for the permanent
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Figure 3: Upper panel shows permanent price impact, giving normalized
price motion in terms of normalized order size for three values of daily
turnover V/Θ = 0.001,0.01,0.1. Lower panel is temporary impact cost
function, in terms of normalized order rate. The examples from Table 3
are also shown. For permanent cost the location on the graph depends
on asset properties but not on time of trade execution; for temporary
cost the location depends on time but not on asset.
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and temporary impact as in Eqs. (1,2). Under the assumption that the
asset price process is a Brownian motion with drift caused by our impact,
these two variables should be independent standard Gaussians. We have
already used this assumption in the heteroskedastic regression, and now
we want to verify it.

Figure 4 shows histograms and Q-Q plots of ξ and χ. The means are
quite close to zero. The variances are reasonably close to 1, and the cor-
relation is reasonably small. But the distribution is extremely fat-tailed,
as is normal for returns distributions on short time intervals (Rydberg
(2000) has a nice illustration), and hence does not indicate that the model
is poorly specified. Nonetheless, the structure of these residuals con-
firms that our model is close to the best that can be done within the
Brownian motion framework.

5 Summary

We have used a large data sample of US institutional orders, and a sim-
ple but realistic theoretical model, to estimate price impact functions for
equity trades on large-cap stocks. Within the range of order sizes con-
sidered (up to about 10% of daily volume), this model can be used to give
quantitatively accurate pre-trade cost estimates, and is in a form that can
be directly incorporated into optimal scheduling algorithms. Work is un-
derway to refine the calibration to handle global markets, and the model
is currently being incorporated into Citigroup’s Best Execution Consult-
ing Services software.
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