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Evolutionary algorithms are not new and have been developed, both
their concepts and framework, since around the 1950’s based on the
idea that the evolutionary process could be used as a general-purpose
optimization tool. The goal of this paper is to propose an alternative
to classical optimization techniques that can handle systems of a
very high dimension. With the rapid rise of computing power, as
well as the augmentation of alternative sources of data, quantitative
analysts are confronted by numerical challenges that didn’t exist
a decade ago. In this paper, we show that a Genetic Algorithm
(GAs) is a simple process based on the evolution paradigm that is
well adapted to very large portfolios, increasing the execution speed;
an optimization of a portfolio of more than 100’000 times series of
5’000 daily returns takes less than 5 minutes. Finally, we illustrate
that, although GAs are a random process that generates a different
solution every time it is run on the same data, it is remarkably
stable.
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Introduction

Evolutionary Algorithms are not new and have been developed, both their concepts and
framework, since around the 1950’s based on the idea that the evolutionary process; a slow
change in population through mutation and cross-breeding for the survival of the fittest,
could be used as a general-purpose optimization tool. This field of research has been
one of many initiatives and desires to model nature and the process underlying phenom-
ena that we have taken for granted. Conceptually based on Darwin’s evolutionary theory
(Robert Darwin (1859)), Evolutionary Algorithms and especially Genetic Algorithms are
based on an attempt to model the process behind natural selection. Evolutionary Algo-
rithms have been considered as a general-purpose heuristic optimization for larger complex
systems in different areas of research, from pattern recognition and portfolio selection to

bio-engineering.

History

Seminal works to define both a mathematical framework and the theoretical foundations
behind the evolutionary process of species were produced around the 1960s. Holland (1994)
shows that Genetic Algorithms enabled the exploration of a greater range of potential
solutions to a given problem, emulating de facto nature, by creating artificial population
and making it evolve through crossbreeding and natural selection. Holland’s purpose was
to identify and develop a framework where he can formalize the Genetic Algorithm into
an evolutionary programming approach for large computational problems. Bremermann’s
work (J. Bremermann et al. (1966)) focused on added characteristic cross-over elements
through the reproduction of parents that were both giving genes to offspring. The "mating"
process was not without its flaws since it could be applied only to characteristics that could
be added together when following the same population distribution. The interested reader
should study Béck and Schwefel (1993) for a detailed but concise review of the evolutionary
strategies and techniques in the field of Evolutionary Algorithms. At this point in time,
some of the main operators inspired by evolution were defined as mutation, crossbreeding

and natural selection.



Dimensionality reduction

Due to the heuristic-based nature and its prior objective, Genetic Algorithms appear as
one extremely well-suited and innovative optimization method to deal with a high dimen-
sionality case where traditional optimisation methods often fail, as evidenced in Raymer
et al. (1997). In this paper, they apply GAs in feature selection and extraction as a means
to reduce the high dimensionality and to improve the accuracy of a classifier in a pattern
recognition problem using a medical dataset on hypothyroid population. The use of a GA
allows to simultaneously perform features selection and features transformation, benefit-
ing from the cross-over and mutation operators. This feature selection approach was first
introduced by Siedlecki and Sklansky (1989). The effective use of parallelism ensures the
possibility to simultaneously explore different combinations and find an efficient solution
in a vast set of possible opportunities, which has been perfectly suited for dimensionality
reduction purposes. Comparisons of commonly accepted dimensionality reduction tech-
niques have been researched by Nick et al. (2015). In their papers, they compare principal
component analysis (PCA), recursive feature elimination and genetic and evolutionary
weighting and selection (GEFeWS) before training an SVM classifier. Results show that
the genetic-based technique produced better accuracy than traditional PCA. Naturally,
this appealing set of interesting characteristics promoted the use of Genetic Algorithms
into a large number of computational use-cases coming from extremely different industries:
from healthcare to aircraft modeling or bio-engineering in the search of a protein design

for drug creation.

Genetic Algorithms and finance

In the field of computational algorithms, the term "search space" is used to qualify the
many potential solutions for a specific problem. Naturally, an optimization tool that can
efficiently, adaptively and rapidly scan through millions of potential portfolios, became
highly appealing for finance professionals. In 2010, Torrubiano and Suarez (2010) used
a hybrid method combined with a Genetic Algorithm for selecting constrained portfolios,
that traditional mixed-integer quadratic optimization would solve with some difficulty. Ge-
netic Algorithms, benefiting from their heuristic nature, could solve portfolio construction
problems that traditional methods could not, by reducing the dimension of the optimization
problem and removing portfolios that are not "fit" to survive. Using Genetic Algorithms

is not a guarantee of finding a near optimum in the optimization process, but the proba-



bility is higher relative to using a traditional quadratic. Evolutionary Algorithms require
no fitness gradient information of any kind to proceed, are easy to process in parallel and
have the ability to escape from local minima where deterministic optimization methods

may fail or are not applicable for non-deterministic polynomial acceptable problems.

Genetic Algorithms and Al

Literally coding rules by hand and specifying in advance the parameters of the models are
more linked to the usual modeling approach still taught in University. The Galilean ap-
proach states that a model should pass through the flames of experiments and observations
for the results. Soon the issue of performing a specific task in a non-variable environment
became clear, hence the need for a computational paradigm that allows for more adaptive
modeling in a dynamic environment. How to confer intelligence to a program and make
sure that the program will learn without being taught to, or without having the rules
formally written and explained. To those regards one can see where Artificial Intelligence
models could be related to Genetic Algorithms by certain axioms as: adaptive computer
program, optimization for high dimensional problems, computationally efficient using par-
allelism and obviously their common evolutionary aspect when we focus on artificial neural
nets. Artificial Neural Networks (ANNs) like GAs are biologically motivated approaches.
Indeed, most machine learning (ML) models could summarize by an optimization under
some regularization. However, this is where the family links stops. Genetic Algorithms
remain very different, GA’s utilize a heuristic approach, whereas ML minimises a loss using
a partial derivative on the gradients. The modeling using features according to fit/label
in a supervised manner via a statistical learning model is different by nature compared
to the GA approach. The current link and plausible future for the interactions between
Genetic Algorithms and artificial neural nets would be in the feature selection and trans-
formation (E. Goldberg (1989)), and in the parameter’s optimization, more lately called
hyperparameters tuning or automatic machine learning, which usually are based using
Bayes priors (Feurer et al. (2015)). GAs could be used in different steps of a neural net
algorithm, through features selection (Raymer et al. (2000)), to replacing back propagation

(J. Montana and Davis (1989)) and potentially evolutionary reinforcement learning.



Data

Our proprietary dataset consists of 74 characteristics of 912 equities listed on US markets.
The list of features are provided in Table 4. The vast majority of features are accounting-
based and proxy a large scope of documented anomalies: size (F. Fama Sr and French
(1992), van Dijk (2011), Asness et al. (2018)), value (F. Fama Sr and French (1992),
Patéari and Leivo (2015)), profitability and investment (F. Fama and French (2014))) and
quality (S. Asness et al. (2014)). Some features are price-based (past returns) and reflect
momentum-like patterns (Novy-Marx (2012), S. Asness et al. (2014)) or volatility-based
(related to low-risk strategies as in Baker et al. (2013) and the references therein). Most
equities being US-based, features are quoted in USD. The chronological range is January
2000 to December 2018, and the points are sampled on a monthly frequency. We engineer all
features so that, each month, their value is equal to their level on the empirical cumulative
distribution function of the current month. The features are thus quantile scores and, as
such, all predictor values lie inside the unit interval and are uniformly distributed for a
given month. We recall that normalizations are commonplace, both in portfolio selection
(e.g., W. Brandt et al. (2009) or Ammann et al. (2016)) and in the asset pricing literature
(T. Kelly et al. (2019), S.J. Koijen and Yogo (2018)). Given the amount of data at our

disposal, providing simple descriptive statistics is impractical.

Why a Genetic Algorithm?

With these data, we build simple strategies by applying several mathematical transfor-
mations (like moving averages for instance) on all our variables. Those transformations
can have 1, 2 or 3 periods as parameters. On each trading day, all stocks are ranked and
strategies will take short and long positions based on these rankings.

Here, we make no a priori assumptions: we show no preference between short term or
long term strategies, or between mean reverting and trend following strategies. Therefore,
we run a grid search on the transformations parameters over a large range of values going
from 2 days to 1000 days. All strategies with a negative average return over the in-sample
period are eliminated. This leads to a set of about N = 100,000 strategies which are
represented by time series of length 7. Optimizing a portfolio of N assets under the

Markowitz paradigm is performed through the solving of the quadratic program
maximize ofw — Aw’Qw

subject to EFw =d

)



where « is the vector of expected returns, () is the covariance matrix of returns and
A > 0 is a parameter describing the investor’s risk aversion. When the problem is properly
conditioned, i.e. when the matrix () is positive definite, classical algorithms like conjugate
gradient or interior point are efficient and easy to use, as long as N stays small. In the
present study, we are dealing with a dataset of n =~ 100,000 time series of daily data with
a length of approximatively 7' = 5,000 days. This brings two challenges that make the use
of a quadratic program impossible:

1. The rank of the covariance matrix is equal to T << N, hence () is not positive
definite,

2. N is much too big.

Therefore, we propose to use a Genetic Algorithm (GA) that, thanks to its metaheuristic
approach, is able to generate high-quality solutions in a tractable computing time for a
problem of this size. Indeed, a GA does not require the computation of partial derivatives
or a covariance matrix which have a computational complexity O(T'N?); only the objective
function is needed (O(T'N)).

How does a Genetic Algorithm work?

Genetic Algorithms belong to the group of Evolutionary Algorithms and are inspired by
Darwin’s theory of evolution. They follow a metaheuristic process which means that they
are non-deterministic. In other words, a GA uses a space search to find a near-optimal
solution by running a random procedure.

There are several ways of setting up a GA and, in this paper, we decided to follow these

5 steps:

1. Initialization: a first population of P candidate solutions (chromosomes) are ran-
domly generated (Generation 1). Each chromosome contains N parameters (genes),

2. Evaluation: each chromosome is evaluated by an objective function f,

3. Selection: among all chromosomes, two are selected because they have the best

objective function values,

4. Crossover: they become the parents of the next generation of N chromosomes. Each
gene of the offspring is the exact replication of either the mother’s or the father’s
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gene. In addition, a random mutation is added to the gene with low probability to
avoid getting stuck in a local optimum,

i, Repeat from step 2 until some criterion is met.

Application to a high dimensional portfolio

[ this seetion, we illustrate our use of Genetic Algorithms to build a portfolio with a large
set of systematic strategies,

As stated in the previous two sections, optimizing a portfolio of this siee is not pos-
sible with a classical algorithim and for this reason, we have utibized a go for the Genetic
Algorithm that we described hitherto.

The objective function is the total return of the portfolio and 15 maximized with regards
to a vector of weights w of length N, Weights are constrained to be non negative {strategies
cannot be shorted) and the volatility of the portfolio & mnst be smaller than an upper bound

Frepmr:

T N
max:lgnize flw) = H (1 + mn:) -1

i=1
subject to wy =0, i=1,... N
d = Omar-
where r; 15 the return of strategy @ on day &

In the first step of the algorithm, a population of P partfolios oy .. pe s generated
with random weights wy o wp. Fach portlolio is evalnated with the objective fonction f
and then ranked. The best two portfolics become parents for Generation 2 (as desceribed
in step 4 of the previous section). The process is repeated until 8 stopping criterion is met;
here, we define a maxinmn mmnber of generations f,.. The whole process is illustrated
by the Alrorithm 1.

In order to produce a meaningful simulation, the process is Tun on a yearly rolling basis
g0 that it can adapt over fime: we nse data from 2000 to 2008 to simulate a portfolio
in 2000, then data from 2000 to 2009 to sionlate 2000, and so on noeil 2018, Costs and
slippage are included in the results. The mumber of strategies for cach vear of simulation
15 shown e Table L.

Regarding computing times, Genetic Algorithms offer the advantage of being fully
parallelizable and, therefore. are particnrlarly well spited to be coded on GPT cands.
Convergence is very fast, considering the high dimensionality of the problem (Table 2): on

T
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Algorithm 1 Genetic Algorithm

Generation 1:

for::=1,1 < Pdo

for j:=1,7 < N do

w;; = random value

end for

evaluate each portfolio P; by computing f(w;)
end for
sort(Py,. .., Pp) wr.t f and store in (]51, . ,Pp>

store ]51 and l52 as parents of Generation 2

Generations 2 to [,,,,:
wy; := weight j of Parent P,
Wy 1= weight j of Parent P,
fori:=1,i < Pdo
for j:=1,7 < N do
uniform crossover:
generate r := random_uniform/(0, 1)
if » > 0.5 then

Wij = U~)1j
else
U)ij = ?IJQJ'
end if
mutation:

generate r := random_ uniform/(0, 1)

if r < 0.001 then
generate s := random_normal(0,0.0001)
Wij = W5 + S

end if
end for
evaluate each portfolio P; by computing f(w;)
end for

sort(Py,. .., Pp) w.r.t f and store in (ﬁl, o Pp>

Store f’l and f’z as parents of the next Generation

return }31 of Generation I,,,,, as the optimal portfolio




In-sample period | Year | Strategies
2000 - 2008 2009 | 102,920
2000 - 2009 2010 | 92,380
2000 - 2010 2011 | 93,620
2000 - 2011 2012 62,465
2000 - 2012 2013 | 68,758
2000 - 2013 2014 | 83,390
2000 - 2014 2015 91,512
2000 - 2015 2016 | 97,836
2000 - 2016 2017 | 123,256
2000 - 2017 2018 | 137,454

Table 1: Number of strategies in the portfolio for each year of simulation.

Year | Strategies | Time
2009 | 102,920 163s
2010 | 92,380 145s
2011 | 93,620 154s
2012 | 62,465 | 108s
2013 | 68,758 114s
2014 | 83,390 137s
2015 91,512 142s
2016 | 97,836 161s
2017 | 123,256 208s
2018 | 137,454 | 231s

Table 2: Computing time on a single P100 Nvidia GPU.

average, 3 minutes are enough to optimize systems of around 100,000 time series with a
single GPU card.

Simulation results are displayed on Figure 1 and Table 3. The goal of this paper is not
to propose a set of strategy outperforming the market. Nevertheless, we see that, even
with very basic signals and factors, the possibility of handling a large number of different
strategies provides interesting results.

More importantly, we show that simulation results are stable when the whole process
is run several times. We performed 100 simulations and display averages, volatilities as
well as information ratios of returns with their standard deviations in parenthesis in Table
3. The tightness (low standard deviation) of each boxplot is remarkable and confirms that

solutions are stable. Figure 3 illustrates it with the distribution of the time series of returns



Year Return Volatility IR

2009 | -3.58% (0.93%) | 5.47% (0.19%) | -0.66 (0.17)
2010 | -3.16% (0.71%) | 4.15% (0.08%) | -0.76 (0.17)
2011 | -5.35% (0.85%) | 4.20% (0.09%) | -1.27 (0.21)
2012 | -1.14% (0.60%) | 3.53% (0.07%) | -0.32 (0.17)
2013 | 6.40% (0.61%) | 3.80% (0.09%) | 1.69 (0.15)
2014 | 3.98% (0.85%) | 4.58% (0.09%) | 0.87 (0.18)
2015 | 6.90% (0.72%) | 5.92% (0.13%) | 1.17 (0.11)
2016 | 6.07% (0.75%) | 5.12% (0.11%) | 1.19 (0.15)
2017 | 0.93% (0.96%) | 4.17% (0.11%) | 0.22 (0.23)
2018 | 0.92% (0.88%) | 3.62% (0.10%) | 0.25 (0.24)
All* | 1.20% (0.26%) | 4.52% (0.04%) | 0.26 (0.06)

Table 3: Simulated returns, volatilities and information ratios with standard deviations in
parenthesis. *Numbers for the whole period are annualized.

for all 100 simulations.

Conclusion

The goal of this paper was to propose an alternative to classical optimization techniques
that can handle systems of very high dimensions. With the rapid rise of computing power
as well as the augmentation of alternative sources of data, quantitative analysts are con-
fronted by numerical challenges that didn’t exist a decade ago. We showed that a Genetic
Algorithm is a simple process based on the evolution paradigm that is well adapted to very
large portfolios. In addition, it is very fast since an optimization of a portfolio of more than
100’000 times series of 5’000 daily returns takes less than 5 minutes. Finally, we illustrated
that although GAs are a random process that generates a different solution every time it
is run on the same data, it is remarkably stable. With the augmentation of available data,
heuristic optimization algorithms will likely become a standard in the near future. Genetic
Algorithms in particular are powerful and well suited for parallel programming.

Signal Description
adv_3m average daily volume over the last 3 months
adv_6m average daily volume over the last 6 months
asset _turnover company revenue on assets
bps lyg book per share 1 year growth
bv book value
capex ps_cf capital expenditures per share
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cash div_cf
cash per share
com _eq_assets
com eq_tcap
cps_lyg
debt assets
debt eq
dep accum fix assets
div
div__yield
dps_1yg
ebit  ta
eps
eps__basic
eps_ dil
eps_dil bef unusual
eps_dil gr
eps__secs
eps_ xord
eq_lyg
fef
fcf oa
fcf ta
ffo
fix assets com _eq
free _ps_cf

gp_oa
gp_ta
ins_rev_lyg
intang
min _int_ tcap
mkt cap 12m
mkt cap 3m
mkt cap 6m
mom_11m _lcl
mom_5m_lcl
mom _sharp 11m lcl
mv_lyg
net cf debt
net margin
ni_lyg
oa
oct

cash dividends/cash flow
cash per share
common equity % total assets
equity % total capital
cash per share one year growth
total debt % total assets
total debt % total equity
accumulated depreciation % gross fixed assets
dividend paid total
dividend yield
dividend per share one year growth
ebit on total asset
earnings per share - fiscal period
eps - basic - before extraordinaries
eps - fully diluted
eps - diluted - before unusual expense
eps - diluted - before extras - % change
earnings per share - security
earnings per share incl. extraordinary items - fiscal
equity one year growth
free cash flow
free cash flow on operating asset
free cash flow on total asset
fund from operations
fixed assets % common equity
cash flow per share (diluted) - free
gross profit on operating asset
gross profit on total asset
insurance reserves 1 year growth
intangibles
minority interest % total capital
market cap 12 months average
market cap 3 months average
market cap 6 months average
price momentum 12-1 months
price momentum 6-1 months
price mom 12-1 divided by price volatility
market value growth
cash flow (net) % total debt
net margin
net income one year growth
operating asset
operating cash flow
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ocf bv
ocf margin
ocf oa
o1
0l _margin
oper _mgn
ptx_mgn
r12m_lcl
r18m lcl
rid lcl
rlm_lcl
r36m _ lcl
r3m_ lcl
rém _lcl
r9m_ lcl
recurring ear tot asset
roa
roc
s_lyg
sales ps
std debt
total liab total asset
volly lcl
vol3y lcl
volby lcl

operating cash flow on book value
operating cash flow margin
operating cash flow operating asset
operating income
operating margin
operating margin
pretax margin
12 months return local currency
18 months return local currency
1 day return local currency
1 month return local currency
36 months return local currency
3 months return local currency
6 months return local currency
9 months return local currency
recurring earning on total assets
return on asset
return on capital
sales 1 year growth
sales per share
short term debt % total debt
total liabilities on total asset
price volatility one year
price volatility 3 years
price volatility 5 years

Table 4: List of features used in simulations.
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Figure 1: Chart of a simulated portfolio of strategies optimized by a Genetic Algorithm
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Figure 2: Boxplots of the returns and volatility of the optimal portfolio by year and for
the whole period
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Figure 3: Distribution of the optimized portfolio returns. Dark blue = 5% and 95%
percentiles, light blue = 25% and 75% quartiles, orange = median.
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